

Secado | EVERDRY® FRA-V

EVERDRY® FRA-V, secador de adsorción con regeneración térmica por medio de aire de ventilador

EVERDRY® FRA-V es una solución especialmente rentable para tareas complejas del secado con aire comprimido de grandes caudales de aire. Es un concepto de instalación estandarizada con múltiples variaciones posibles, gracias a nuestra ingenieria propia damos respuesta a necesidades individualizadas.

El concepto clásico aplicado de forma innovadora con la más moderna tecnología

Una técnica de proceso acreditada, junto con la tecnología de control más moderna, están disponibles para los tres conceptos básicos variables. Las series estándar se escalonan en 23 niveles de rendimiento desde 580 hasta 20.000 m³/h para un rendimiento óptimo en todas las zonas climáticas de mundo. Bajo petición del cliente son realizables también caudales volumétricos más grandes.

En el EVERDRY FRA-V la desorción se realiza en corriente inversa con respecto al sentido de adsorción, con aire de ventilador calentado en funcionamiento bajo presión, y la refrigeración mediante aire de ventilador en funcionamiento en vacío. No se producen pérdidas de aire comprimido para la regeneración (Purga CERO). El uso de este secador de adsorción depende de las condiciones ambientales, que se deben comprobar antes de usarlo.

Modelo	FRP	FRA	FRL
Punto de rocío a presión	-40 °C	-40 °C	-40 °C -70 °C opcional
Clase de calidad	2*	2*	2 1

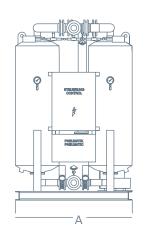
FR

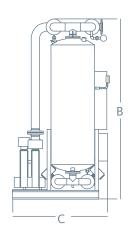
> Solución orientada al cliente

- Construcción e ingeniería integradas en el mismo servicio especializado
- Concepto integral en lugar de componentes individuales
- Control mediante panel táctil, cómodo e informativo
- > Estructura de fácil mantenimiento

> Alta fiabilidad de los procesos

- Supervisión segura del funcionamiento mediante sensores
- > Galvanizado a alta temperatura de gran calidad
- Componentes de funcionamiento probado y fácil mantenimiento


> Energéticamente muy eficiente


- Accesorios individuales para el control energético
- Regulación dependiente de la carga de gran eficiencia energética

EVERDRY® FRA-V: FRA-V 0600 - FRA-V 3400

- Concebido para un funcionamiento continuado y totalmente automático
- Desorción en corriente inversa con respecto al sentido de adsorción por medio de aire de ventilador calentado
- › Ninguna pérdida de presión para la regeneración
- > Refrigeración por medio de aire de ventilador
- > Concebido para instalación en interior
- Llaves individuales de caudal optimizado para minimizar la pérdida de carga

PURGA CERO

EVERDRY®	FRA-V 0600	FRA-V 0750	FRA-V 0900	FRA-V 1100	FRA-V 1400	FRA-V 1700
Caudal volumétrico (m³/h)	580	720	880	1100	1400	1700
Conexión PN 16 DIN 2633	DN 50	DN 50	DN 50	DN 80	DN 80	DN 80
Potencia de conexión (kW)	10,1	10,1	14,2	14,2	18	25
Datos de medidas						
A (mm)	1510	1550	1600	1650	1700	1750
B (mm)	2315	2325	2390	2420	2650	2705
C (mm)	1165	1165	1190	1210	1325	1470
Peso (Kg)	1150	1250	1350	1650	1900	2250

EVERDRY®	FRA-V 2000	FRA-V 2300	FRA-V 2600	FRA-V 2900	FRA-V 3400
Caudal volumétrico (m³/h)	2000	2300	2600	2900	3400
Conexión PN 16 DIN 2633	DN 100				
Potencia de conexión (kW)	28	31	38,5	41,5	48
Datos de medidas					
A (mm)	1800	1850	1940	1990	2200
B (mm)	2755	2800	2820	2840	3010
C (mm)	1520	1555	1785	1810	1945
Peso (Kg)	2600	2800	3100	3350	3850

Condiciones de servicio*			
Medio	Aire comprimido		
Presión de servicio	7 bar [ü]		
Temperatura de entrada	+35° C		
Humedad de entrada	saturada		
Punto de rocío a presión	-40 °C		

Límites de aplicación*	
Presión de servicio	410 bar [ü]
Temperatura de entrada	543 °C
Temperatura ambiente	5+40° C
Aspiración máx. del ventilador	35 °C / 40 % h. r. / 30 °C / 50 % h. r.

Conexión eléctrica*	
Suministro de tensión	3 Ph. 400 V 50 Hz
Tipo de protección	IP 54, conforme a IEC 529 (sin protección Ex)
Versión	Conforme a VDE / IEC
Divergencia de tensión admisible	+/- 10 %

^{*} Condiciones distintas a petición

Condiciones de referencia según DIN/ISO 7183				
Medio	Aire comprimido			
Caudal volumétrico en m³/h con respecto a	20 °C (1 bar [a])			
Presión de servicio	7 bar [ü]			
Temperatura de entrada de aire comprimido	+35° C			
Humedad de entrada	saturada			

Secador de adsorción de regeneración en caliente con ingeniería propia, para soluciones de sistema individualizadas

Perfil

- Requisitos específicos del ramo y de la aplicación (calidad de aire comprimido, caudales volumétricos, formas de energía para el calentamiento del aire de regeneración, etc.)
- Costes de inversión y de servicio, tiempo de armonización individualizado
- Normas de aceptación locales
- Zona climática, condiciones de aplicación locales, parámetros económicos

Concepto

- Determinación del tipo constructivo de la instalación
- Desarrollo de las solución individualizada en base a necesidades específicas

Presentación

 Presentación del concepto de solución

Realización

- Ejecución del proyectoIngeniería propia a través
- de nuestro equipo de expertos experimentado y competente

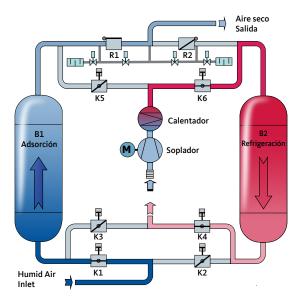
Puesta en servicio

- Montaje de la instalación in situ
- Ajuste óptimo y adaptación a las condiciones locales

Comunicación continua de nuestros expertos con el cliente

Asistencia / asesoramiento / optimización

Desarrollo de las funciones del EVERDRY® FRA-V


Fase de adsorción

El aire comprimido húmedo circula por la entrada de la instalación y, a través de la llave **K1** entra en el depósito de adsorción **B1**. El distribuidor de caudal realiza una distribución homogénea del aire comprimido húmedo. Durante el paso, el medio de adsorción recoje la humedad. El aire comprimido

seco accede, mediante la llave de salida **R1**, a los puntos de consumo. El proceso de adsorción finaliza en función del tiempo o del punto de rocío (opcional). La adsorción se realiza de abajo hacia arriba.

Fase de desorción

Mientras en el depósito de adsorción **B1** se produce el secado del aire comprimido, se regenera el depósito de adsorción **B2**, previamente saturado de humedad. Antes de iniciarse la regeneración, en el depósito de adsorción **B2** se produce una suave descarga de presión hasta la presión atmosférica. La desorción se realiza con aire ambiente aspirado. El ventilador de regeneración impulsa el aire ambiente hasta un calentador. Aquí, el aire del ventilador se calienta hasta la temperatura de desorción deseada. A través del

ventilador de regeneración se produce un aumento de temperatura que influye positivamente sobre la necesidad de potencia del calentador. El caudal de aire del ventilador accede, a través de la llave K6, hasta el depósito de adsorción B2 que se pretende desorber. La humedad recogida en el medio de adsorción se vaporiza y es dirigida por el caudal de aire del ventilador, a través de la llave K4, hasta la atmósfera. La desorción se realiza con optimización energética en un proceso de contracorriente. De este modo, la humedad recorre el trayecto más corto desde el depósito de adsorción hasta la atmósfera. El aire de ventilador calentado se enfría al pasar por el depósito de adsorción B2, debido a la evaporación del agua. Por tanto, la temperatura de salida del aire de desorción no es mucho más alta que la temperatura de evaporación (aprox. 40 - 60°C). Mediante el proceso de desorción se reduce la humedad en el lecho secante. Al descender la humedad, aumenta la temperatura de salida del aire de desorción. La fase de desorción finaliza al alcanzar la temperatura de proceso requerida. La desorción se produce en corriente inversa con respecto al sentido de adsorción, de arriba hacia abajo.

Fase de Standby

En la fase de Standby, el depósito recién regenerado queda bajo presión de servicio con la llave de entrada **K2** cerrada.

Durante este tiempo, el depósito en Standby se mantiene bajo presión con la válvula de acumulación de presión abierta. Cuando la fase de adsorción es supervisada por un control dependiente del punto de rocío (opcional) y finaliza, la duración de la fase

de Standby depende del estado de carga del depósito de adsorción **B1**. Hasta que no se alcanza la capacidad de derrame del medio de adsorción (aumento del punto de rocío a presión) no se inicia el proceso de conmutación. Si la instalación funciona en modo "conmutación en función del tiempo", el proceso de conmutación se inicia una vez finalizado el ciclo configurado.

Fase paralela

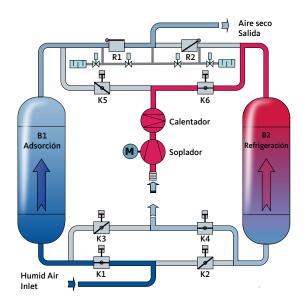
Antes del proceso de conmutación del depósito de adsorción de **B1** a **B2**, estos se conectan en paralelo abriendo la llave de entrada K2.

Durante unos 5 – 15 minutos (ajustables individualmente), el aire comprimido fluye por ambos depósitos de adsorción.

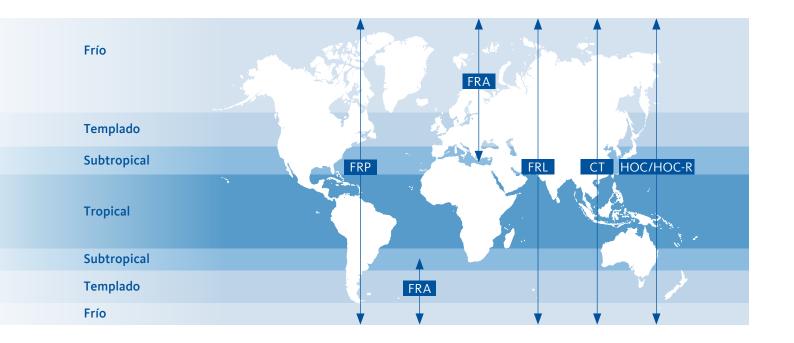
Proceso de conmutación

Una vez finalizada la fase paralela, se produce la conmutación al depósito de adsorción **B2** regenerado en los siguientes pasos:

- > Cierre de la llave de entrada K1 en el depósito de adsorción cargado B1
- > Cierre de la válvula de acumulación de presión
- > Apertura de la válvula de descarga de presión para el depósito de adsorción B1, en regeneración
- > Apertura de las llaves de regeneración K3 y K5
- > Encendido del ventilador y del calentador


Ahora, el depósito **B1** saturado con humedad se encuentra en la fase de desorción, mientras que el depósito de adsorción **B2** se encarga de secar el aire comprimido

Fase de refrigeración


Para evitar picos de temperatura y punto de rocío tras la conmutación, el calor acumulado tras la fase de desorción en el medio de adsorción se deriva mediante el caudal de aire frío del ventilador. Por la llave **K4** fluye el aire ambiente refrigerado hasta el depósito de adsorción **B2** que se desea refrigerar. La refrigeración se produce mediante el ventilador, en modo de aspiración de abajo hacia arriba. Este proceso evita la carga previa del medio de adsorción por la humedad ambiental en la zona de salida del depósito de adsorción, lo que influye considerablemente en la calidad del secado. La fase de refrigeración finaliza al alcanzar la temperatura de proceso necesaria. Una vez finalizada la fase de refrigeración, se cierran las válvulas de regeneración **K4** y **K6**.

A continuación, se realiza una lenta acumulación de presión en el depósito de adsorción en regeneración **B2**. Los transmisores de presión integrados supervisan la adecuada acumulación de presión. Cuando ambos depósitos tienen la misma presión de servicio, comienza la siguiente fase (Standby). La refrigeración se realiza en corriente sincronizada con el sentido de adsorción,

de abajo hacia arriba. Para lograr una calidad homogénea del aire comprimido es necesario refrigerar de manera eficiente el medio de adsorción. Con condiciones climáticas desfavorables, como temperatura ambiente o humedad del aire excesivas, ya no es posible lograr una refrigeración suficiente con aire ambiente. Para garantizar la seguridad de procesos incluso en tales casos, su secador de adsorción EVERDRY® está equipado con un sensor que mide constantemente la temperatura ambiente y la humedad relativa del aire circundante. Después se calcula el punto de rocío del aire ambiente resultante. Estos valores aparecen constantemente en la pantalla del control del secador. En caso de que se sobrepasen los límites preconfigurados, se lleva a cabo la fase de refrigeración con aire ambiente, con una pequeña proporción del aire comprimido desecado (refrigeración con aire comprimido). Tan pronto como los valores descienden de nuevo por debajo de los límites preconfigurados, la instalación vuelve a la refrigeración por aire ambiente en la siguiente fase de refrigeración. Esta función eleva la seguridad de funcionamiento de su EVERDRY® y garantiza una calidad constante del aire comprimido independientemente de las condiciones ambientales.

El secador de adsorción con regeneración por calor apto para todo el mundo

¿Tiene usted alguna otra pregunta sobre la preparación óptima de su aire comprimido?

¡En ese caso, tenemos las respuestas! Y soluciones adecuadas en todo lo referente a la cadena de preparación. Esperamos saber de usted y poder presentarle nuestros productos de los sectores

del tratamiento de condensados, filtración, secado, tecnología de medición y tecnología de proceso, así como nuestros amplios servicios.

Visítenos en

BEKO Tecnológica España S.L.

C/ Torruella i Urpina, 37-42 nave 6 08758 Cervelló - Barcelona Telf. 936 327 668 info.es@beko-technologies.es www.beko-technologies.es

